学位论文 > 优秀研究生学位论文题录展示

层层自组装多功能纳米基因载体的研究

作 者: 李鹏
导 师: 张娜;邵伟
学 校: 山东大学
专 业: 药剂学
关键词: 基因载体 层层自组装 阳离子脂质体 pH敏感 多功能纳米基因载体
分类号: R944.9
类 型: 硕士论文
年 份: 2011年
下 载: 190次
引 用: 0次
阅 读: 论文下载
 

内容摘要


随着分子生物学的发展以及人类基因组计划的完成,基因治疗为克服遗传病、恶性肿瘤、心脑血管疾病等严重威胁人类健康的疾病提供了新的方式。基因治疗是将人的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞以纠正基因的缺陷或者发挥治疗作用而达到治疗疾病的目的。由于裸露的外源基因易被机体或细胞中的核酸酶所降解,表达效率低,因此就需要选择高效的基因载体携带基因进入细胞,降低其被降解的几率,提高基因表达的效率。目前常用的基因载体分为病毒载体和非病毒载体。与病毒基因载体相比,非病毒载体具有安全性高、低免疫原性、无基因插入片段大小限制以及易于规模化生产等优势,但是其基因转染的效率较低。随着对基因传递过程的深入了解,人们越来越意识到,安全高效的基因传递需要多功能化的非病毒基因载体:如应具有长循环功能、细胞或组织靶向功能、内吞体逃逸功能以及核靶向功能等。显然,在一种单一的载体上有效实现上述功能非常困难。因此,如何将各种功能化的材料组装于同一基因载体中是目前非病毒基因载体研究的热点和难点之基于静电吸引力的层层自组装(Layer-by-Layer, LbL)技术为构建多层次的超分子结构提供了新的方式,其操作简便、组装过程可控、不使用有机溶剂,有助于保持基因的生物活性。因此,本课题采用LbL技术,以各种功能化的聚电解质为材料,成功构建了多功能纳米基因载体。首先以具有核靶向功能的鱼精蛋白压缩DNA形成荷正电的内核,然后以此为模板,依次组装DNA层、具内吞体逃逸功能的阳离子LHLN脂质层和具有长循环功能的pH敏感性羧甲基壳聚糖(CMCS),最终构建了具有长循环功能、细胞膜穿透功能、内吞体逃逸功能、高DNA量和核靶向功能的多功能纳米基因载体。课题的主要研究方法和结果如下:1.聚阳离子多层纳米粒的研究在LbL自组装过程中,模板纳米粒的电荷性质、聚电解质的用量、溶液的离子强度,都会对组装体的结构和功能产生影响。本课题首先制备了聚阳离子多层纳米粒,考察了影响聚电解质材料组装过程的影响因素,为进一步将聚合物电解质材料用于多功能纳米基因载体的组装提供了实验依据。鱼精蛋白(Pro)压缩DNA后形成致密的Pro/DNA复合物纳米粒,其表面带有高密度的正电荷,可以作为组装过程的模板。因此,课题首先采用具有核定位功能的Pro压缩DNA形成二元复合物,然后以此复合物为模板,通过LbL技术,依次沉积阴离子DNA层和阳离子聚乙烯亚胺(PEI)层,制备了PEI/DNA/Pro/DNA聚阳离子多层纳米粒。该纳米粒形态呈球形或类球形,粒径为150.1±2.9 nm,电位为14.9±2.1 mV,随着各层的组装,电位发生了逆转,粒径逐渐增大。PEI/DNA/Pro/DNA纳米粒可以保护DNA免受核酸酶的降解,其对HepG2和HeLa细胞的毒性均较低,明显低于商品化PEI/DNA (P<0.05)。转染条件下,在HepG2细胞和HeLa细胞中的转染效率明显高于PEI/DNA (P<0.05)。因此,采用层层自组装技术对于构建高效低毒的基因载体具有极大的应用潜力。2.脂质体包裹PEI/DNA复合物纳米粒的研究采用层层自组装技术组装非病毒基因载体的过程中,除了使用各种聚电解质材料外,还可以使用荷电的脂质体。相比于聚电解质材料,脂质体具有类似生物膜的双分子层状结构,有很好的细胞亲和性与组织相容性,还可以通过融合进入细胞内,提高载体的入胞效率。由于脂质体的电荷及亲疏水性质远不同于聚电解质,因此有必要研究脂质体的LbL组装行为。本课题采用阴离子脂质体对PEI/DNA复合物进行包裹,制备脂质体/PEI/DNA三元纳米粒(Lipo/PEI/DNA ternary nanoparticles)。该三元纳米粒形态呈球形或类球形,平均粒径为234.2±6.9nm,Zeta电位为-20.7±2.5 mV,具有较强抗核酸酶能力和较好的血浆稳定性,具有缓释效果,且无突释效应,体外释放曲线符合Ritger-Peppas equation释放动力学方程:1nQ=0.76711nt+2.9238(r=0.9942)。三元纳米粒的细胞毒性较低,具有一定的血清稳定性,在转染介质中含有血清时仍能够高效的转染HeLa细胞,优于PEI/DNA复合物。因此,Lipo/PEI/DNA具有一定的血浆稳定性,有望扩展至体内转染实验的研究。同时,认识脂质体在聚电解质内核表面的组装行为,为荷电性的脂质体用于层层自组装奠定了基础。3.新型阳离子LHLN脂质体的研究层层自组装所使用的阳离子组装材料中,阳离子脂质体是目前广泛研究的非病毒基因载体,其易于大规模生产,具有较低的免疫原性和较高的携带DNA能力,能够通过内吞途径有效携带DNA进入细胞,同时大多数阳离子脂质体中含有二油酰磷脂酰乙醇胺(DOPE),具有内吞体逃逸功能,非常适用于多功能纳米基因载体的构建。但是阳离子脂质体的毒性问题限制了其广泛应用。本课题以课题组自行合成的LHLN作为新型阳离子类脂与中性磷脂DOPE合用,采用薄膜-超声分散法制备了新型高效、低毒的阳离子LHLN脂质体,并对其体内外基因转染的效率进行了考察。阳离子LHLN脂质体和载基因LHLN脂质体均呈球形或类球形,其中载基因LHLN脂质体的内部有许多空泡。LHLN脂质体和载基因LHLN脂质体的平均粒径分别为120.6±2.4 nm和226.3±6.8 nm,Zeta电位分别为38.9±1.9mV和20.5±2.1 mV。LHLN脂质体可以高效的结合DNA,保护DNA免受核酸酶的降解。转染剂量下,LHLN脂质体对HepG2和A549细胞的细胞毒性明显低于商品化脂质体转染试剂Lipofectamine2000 (P<0.05),而在这两种细胞中的转染能力与Lipofectamine2000相当。体内大鼠肺部基因转染研究中,LHLN脂质体的转染效率明显高于商品化Lipofectamine2000 (P<0.05)。因此,LHLN脂质体是一种高效低毒的阳离子脂质体,有望替代Lipofectamine2000,广泛用于基因转染的研究。同时,其也为阳离子脂质体参与多功能纳米基因载体的构建提供了关键性的功能材料。4.羧甲基壳聚糖修饰多功能载基因纳米粒的研究在对不同电解质材料的组装性质和阳离子LHLN脂质体的研究基础上,旨在通过层层自组装技术构建多功能纳米基因载体。采用具有核靶向功能的鱼精蛋白(Pro)压缩DNA形成荷正电的Pro/DNA复合物,以此复合物为模板,依次组装DNA层、具内吞体逃逸功能的阳离子LHLN脂质层以及长循环功能的pH敏感CMCS层。利用LbL技术,首先将DNA吸附于荷正电的模板表面形成DNA/Pro/DNA (DPD),然后将阳离子脂质体组装于DPD的表面就获得了脂质体包裹的DPD (CLDPD),最后在荷正电的CLDPD的表面组装CMCS,成功制备了多功能纳米基因载体(CMCS-CLDPD)。组装过程中,DNA/Pro/DNA、CLDPD及CMCS-CLDPD表面均可以观察到明显的层状结构,电位随着组装过程的进行也逐步发生了逆转,验证了多层结构纳米粒的形成。CMCS-CLDPD呈球形或类球形,有明显的核壳结构,平均粒径为210.9±6.8 nm,Zeta电位为-8.9±2.7 mV,具有较强的抗核酸酶能力和血浆稳定性。比较了CMCS-CLDPD在不同pH值的缓冲液中DNA的释放行为,发现载体中的DNA在酸性介质中的释放更快。测定不同PBS中CMCS-CLDPD的电位,当pH≤6.5时,电位发生逆转,说明外层的CMCS具有pH敏感性,可以在pH≤6.5时响应性脱落。CMCS-CLDPD的细胞毒性较低,可以高效转染HepG2细胞,在不含血清培养基中,转染结果存在如下关系:pH7.4条件下,CLDPD> PEI/DNA> CMCS-CLDPD (P<0.05); pH6.5条件下,[CMCS-CLDPD、CLDPD]> PEI/DNA (P<0.05),而此时CMCS-CLDPD与CLDPD转染效率无显著性差异。结果表明, CMCS-CLDPD在pH6.5条件下可以选择性的脱落外层CMCS,暴露阳离子CLDPD,提高了基因转染的效率。在含20%血清的培养基(pH7.4条件)中,转染效率存在如下关系:CMCS-CLDPD> CLDPD> PEI/DNA (P<0.05),结果表明,CMCS-CLDPD具有较好的血浆稳定性,在含血清培养基中仍然能够高效转染细胞。荷瘤小鼠瘤内给药后,CMCS-CLDPD组和CLDPD组的转染效率相当,说明CMCS-CLDPD在荷瘤动物瘤组织内仍具有pH敏感性,可以稳定转染肿瘤细胞。因此,pH敏感性多功能载体为构建抗肿瘤的基因载体提供了一种新的思路。综上所述,层层自组装技术是一种简单而又行之有效的组装多功能基因载体的方法,该方法对于构建高效低毒的非病毒基因载体具有极大的应用价值。

全文目录


中文摘要  14-18
ABSTRACT  18-23
符号说明  23-24
前言  24-30
第一部分 聚阳离子多层纳米粒的研究  30-44
  一、实验材料  31-33
    1 试剂与药品  31
    2 主要仪器  31
    3 细胞  31-32
    4 试剂配制  32-33
  二、实验方法  33-35
    1 Pro/DNA二元复合物纳米粒的制备  33
    2 PEI/DNA/Pro/DNA自组装纳米粒的制备  33
    3 组装过程中影响因素的考察  33-34
      3.1 琼脂糖凝胶的制备及使用方法  33
      3.2 氮磷比(N/P)对Pro/DNA二元复合物形成的影响  33
      3.3 外层DNA用量对DNA/Pro/DNA形成的影响  33
      3.4 PEI用量对PEI/DNA/Pro/DNA形成的影响  33-34
    4 PEI/DNA/Pro/DNA自组装纳米粒的理化性质  34
    5 PEI/DNA/Pro/DNA自组装纳米粒的抗核酸酶能力考察  34
      5.1 PEI/DNA/Pro/DNA中DNA提取方法的选择  34
      5.2 抗核酸酶能力  34
    6 PEI/DNA/Pro/DNA自组装纳米粒的细胞毒性实验  34-35
    7 PEI/DNA/Pro/DNA自组装纳米粒的体外转染实验  35
    8 统计分析  35
  三、实验结果  35-42
    1 组装过程中各因素的影响  35-37
      1.1 N/P对Pro/DNA二元复合物形成的影响  35-36
      1.2 外层DNA用量对DNA/Pro/DNA形成的影响  36
      1.3 PEI用量对DNA/Pro/DNA形成的影响  36-37
    2 PEI/DNA/Pro/DNA自组装纳米粒的理化性质  37-38
    3 PEI/DNA/Pro/DNA自组装纳米粒的抗核酸酶能力考察  38-40
      3.1 不同浓度肝素提取PEI/DNA/Pro/DNA纳米粒中DNA的结果  38-39
      3.2 抗核酸酶能力  39-40
    4 PEI/DNA/Pro/DNA自组装纳米粒的细胞毒性结果  40
    5 体外转染结果  40-42
  四、讨论  42-44
第二部分 脂质体包裹PEI/DNA复合物纳米粒的研究  44-59
  一、实验材料  44-45
    1 试剂与药品  45
    2 主要仪器  45
  二、实验方法  45-48
    1 DNA含量测定方法的建立  45-46
      1.1 PicoGreen工作液配制  45
      1.2 激发、发射波长的选择  45-46
      1.3 标准曲线的建立  46
      1.4 精密度试验  46
      1.5 回收率试验  46
    2 PEI/DNA复合物的制备  46
    3 空白阴离子脂质体的制备  46-47
      3.1 空白阴离子脂质体的单因素考察  46-47
      3.2 正交设计试验  47
      3.3 处方重现性考察  47
    4 Lipo/PEI/DNA三元纳米粒的制备  47
    5 Lipo/PEI/DNA三元纳米粒的理化性质  47
    6 Lipo/PEI/DNA三元纳米粒的抗核酸酶能力考察  47
    7 血浆稳定性考察  47
    8 体外释放实验  47-48
    9 细胞毒性实验  48
    10 体外转染实验  48
  三、实验结果  48-57
    1 DNA含量测定方法的考察结果  48-50
      1.1 激发、发射波长的确定  48-49
      1.2 标准曲线的建立  49
      1.3 精密度实验  49
      1.4 回收率实验  49-50
    2 PEI/DNA处方考察结果  50-51
    3 空白阴离子脂质体处方考察结果  51-53
      3.1 单因素考察结果  51
      3.2 正交设计结果  51-53
      3.3 重现性考察结果  53
    4 Lipo/PEI/DNA三元纳米粒的处方考察结果  53
    5 纳米粒的理化性质  53-55
    6 Lipo/PEI/DNA三元纳米粒的抗核酸酶能力  55
    7 Lipo/PEI/DNA三元纳米粒的血浆稳定性  55-56
    8 体外释放结果  56
    9 Lipo/PEI/DNA三元纳米粒的细胞毒性评价结果  56-57
    10 体外细胞转染结果  57
  四、讨论  57-59
第三部分 新型阳离子LHLN脂质体的研究  59-72
  一、实验材料  59-60
    1 试剂与药品  59-60
    2 主要仪器  60
    3 细胞  60
    4 动物  60
  二、实验方法  60-63
    1 阳离子脂质体的制备  60
    2 载基因LHLN脂质体的制备  60-61
    3 LHLN脂质体的DNA结合能力考察  61
      3.1 DNA结合能力的定性考察  61
      3.2 DNA结合能力的定量考察  61
    4 LHLN脂质体的形态、粒径和表面电位的测定  61
    5 抗核酸酶能力考察  61-62
      5.1 核酸酶浓度的影响  61
      5.2 孵育时间的影响  61-62
    6 血浆稳定性考察  62
    7 载基因LHLN脂质体细胞毒性考察  62
    8 载基因LHLN脂质体体外细胞转染能力考察  62-63
    9 载基因LHLN脂质体的大鼠肺部给药体内转染实验  63
    10 数据统计分析  63
  三、实验结果  63-70
    1 LHLN脂质体及载基因LHLN脂质体理化性质  63-64
    2 LHLN脂质体的DNA结合能力考察结果  64-65
      2.1 复合物凝胶电泳分析结果  64-65
      2.2 DNA结合率的荧光定量结果  65
    3 载基因LHLN脂质体抗核酸酶能力考察结果  65-66
    4 血浆稳定性考察结果  66
    5 载基因LHLN脂质体细胞毒性考察结果  66-67
    6 载基因LHLN脂质体体外细胞转染结果  67-69
    7 载基因LHLN脂质体大鼠肺部给药后体内转染结果  69-70
  四、讨论  70-72
第四部分 羧甲基壳聚糖修饰多功能载基因纳米粒的研究  72-88
  一、实验材料  73-74
    1 试剂与药品  73-74
    2 主要仪器  74
    3 细胞  74
    4 动物  74
  二、实验方法  74-77
    1 CMCS-CLDPD的制备  74
    2 CMCS-CLDPD的形态、粒径及电位的测定  74-75
    3 CMCS-CLDPD的pH敏感性考察  75
    4 CMCS-CLDPD的抗核酸酶能力考察  75
    5 CMCS-CLDPD的血浆稳定性考察  75
    6 CMCS-CLDPD的细胞毒性  75-76
    7 CMCS-CLDPD的体外基因转染  76
    8 CMCS-CLDPD的体内基因转染研究  76-77
  三、实验结果  77-85
    1 CMCS-CLDPD制备过程中主要影响因素的考察结果  77-78
      1.1 阳离子LHLN脂质体与DPD的质量比对CLDPD的影响  77-78
      1.2 CMCS与CLDPD的质量比对CMCS-CLDPD的影响  78
    2 CMCS-CLDPD的理化性质  78-80
    3 CMCS-CLDPD的pH敏感性考察结果  80-81
    4 CMCS-CLDPD的抗核酸酶能力考察结果  81
    5 CMCS-CLDPD的血浆稳定性考察结果  81-82
    6 CMCS-CLDPD的细胞毒性考察结果  82-83
    7 CMCS-CLDPD的体外转染结果  83-84
    8 CMCS-CLDPD的体内转染结果  84-85
  四、讨论  85-88
总结与展望  88-91
参考文献  91-97
致谢  97-98
攻读学位期间发表的学术论文目录  98-99
文献综述  99-142
  REFERENCE  127-142
学位论文评阅及答辩情况表  142

相似论文

  1. 聚乙烯亚胺修饰糖脂共聚物介导基因治疗研究,R450
  2. 壳聚糖基温敏性复合水凝胶的制备及性能研究,R943
  3. 牛血清蛋白和鱼精蛋白从NOCC/海藻酸盐水凝胶中的释放:两种不同等电点的生物分子的对照试验,R943
  4. 乳糖化—去甲斑蝥素磷脂复合物pH敏感型脂质体的研究,R943
  5. 层层组装构建多重响应性复合基因载体,TB383.1
  6. 用于防龋DNA疫苗粘膜传递的有效载体的研究,R392.1
  7. 疏水改性羧甲基纤维素钠及其pH敏感水凝胶的研究,O631.3
  8. 共输送阿霉素和基因的纳米载药系统的研究,R943
  9. 碳纳米管在聚合物纳米纤维表面的组装及其细胞活性评价,R318.08
  10. 聚丙烯酰胺类功能性水凝胶的制备与性能研究,TB383.1
  11. 二氧化钛中空球的制备及生物活性研究,TB43
  12. 双敏感的N-异丙基丙烯酰胺共聚物纳米凝胶的研究,TB383.1
  13. 不同支臂结构的聚谷氨酸基材料的合成和性能研究,TQ316.3
  14. 聚丙烯酸酯脂质体复合微粒作为生物技术药物载体的研究,R944
  15. pAdtrack-cmv-rHSG重组穿梭质粒载体的构建、序列分析及rHSG生物信息分析,R346
  16. TiO_2/PE多层纳米薄膜的制备及表征,TB383.1
  17. 卟啉自组装膜电化学表征及其应用研究,O626
  18. 基于聚电解质修饰纳米通道膜的微流控芯片研究,O631.3
  19. pH敏感光交联水凝胶及空心纳米水凝胶的研究,O648.17
  20. pH敏感性聚(2-(丙烯酰氧基)丙酸)水凝胶的合成及其性能研究,O648.17
  21. 仿生矿化海藻酸钙杂化材料的制备及智能性药物释放,TB39

中图分类: > 医药、卫生 > 药学 > 药剂学 > 剂型 > 其他
© 2012 www.xueweilunwen.com