学位论文 > 优秀研究生学位论文题录展示

纳米多孔金属材料在生物催化和生物传感中的应用研究

作 者: 邱华军
导 师: 黄锡荣
学 校: 山东大学
专 业: 分析化学
关键词: 腐蚀去合金 纳米多孔金属 固定化酶 热稳定性 生物传感器 直接电化学 酶电极 SERS
分类号: TB383.1
类 型: 博士论文
年 份: 2011年
下 载: 500次
引 用: 0次
阅 读: 论文下载
 

内容摘要


本论文采用腐蚀合金(去合金)方法制备了一系列纳米多孔金属材料,并对其进行了基本的表征。研究了生物大分子催化剂酶在纳米多孔金属表面的固定化,固定化酶的基本酶学性质,以及酶的直接电化学性质。结合多孔金属自身的电催化性质和酶的催化性质,探索了多孔金属固定化酶在电化学生物传感器及生物燃料电池方面的潜在应用。此外,尝试研究了纳米多孔金属材料的表面增强拉曼散射性能及其潜在的应用。1.漆酶在多孔纳米金上的固定:固定方法和粒度效应的比较研究通过对金银合金中银的去合金腐蚀制得纳米多孔金(NPG),将NPG用作漆酶的固定化载体。采用三种固定化策略,即物理吸附、静电吸引和共价偶联,将漆酶固定在NPG上。根据漆酶的固载量、比活性及泄漏量对三种方法进行了比较研究。结果表明,物理吸附法是漆酶在NPG上固定的最好策略。分析表明这是由于纳米金表面与漆酶表面残余氨基酸之氨基之间可形成了共价键。NPG的粒度大小对漆酶固载量及酶动力学有影响。小的NPG的粒径有利于更多的漆酶进入内孔被固定住,也有利于酶底物及其氧化产物的传质,即小粒径的NPG载体更有利于漆酶催化转化反应。2.漆酶在纳米多孔金表面的固定及直接电子转移通过腐蚀方法以及腐蚀后的热处理,制备了一系列孔径的纳米多孔金,通过扫描电镜和氮气吸附技术等对纳米多孔金的形貌进行了表征。漆酶通过物理吸附的方法固载到多孔金表面。详细研究了孔径大小对固定化漆酶酶学性质的影响。结果表明,拥有40-50 nm的多孔金是漆酶的适宜载体。与游离酶相比,固定化酶的最佳pH值没有改变,但最佳反应温度从40℃上升到60℃固定化酶的储存稳定性也有了很大的提高。利用漆酶固载的多孔金构建了漆酶电极,并实现了漆酶的直接电化学。此漆酶修饰的多孔金电极表现出强的生物电催化还原氧的性能。由此可见纳米多孔金是良好的漆酶固定化载体。此固定化酶在生物燃料电池和生物传感器方面具有潜在应用。3.纳米多孔金表面木质素过氧化物酶的固定化,酶学性质及过氧化氢原位释放基于前期工作,本研究尝试用纳米多孔金为载体对木质素过氧化物酶(LiP)进行固定化。通过腐蚀金银合金的方法制备了孔径为40-50nm的多孔金。通过吸附方法,LiP被成功地固定到多孔金表面。固定化酶的最佳反应温度为40℃,高出游离酶10℃。储存在45℃2小时后,固定化酶仍保持有55%的初始活力,而游离酶几乎完全失活。此外,通过共固定化的葡萄糖氧化酶催化转化葡萄糖反应原位释放H202获得了高的持续的LiP活力。此共同固定化酶体系可有效地降解染料。4.基于酶修饰的纳米多孔金的电化学传感器基于纳米多孔金独特的物理化学性质,本章工作尝试构建了基于纳米多孔金的电化学传感器。与平面金电极相比,纳米多孔金修饰的玻碳电极表现出对烟酰胺腺嘌呤二核苷酸和过氧化氢高的电催化活性。多孔金高的电催化活性应该是由于它含有大量的活性位点和高的比表面积。当多孔金电极担载醇脱氢酶或葡萄糖氧化酶后,该酶修饰的多孔金电极可以灵敏检测乙醇或葡萄糖。由于多孔金结构的匀称、电催化活性强,该醇脱氢酶或葡萄糖氧化酶修饰的多孔金电极表现出对乙醇或葡萄糖良好的电分析性能。多孔金对酶的稳定化作用使得此酶电极非常稳定。在4℃下储存一个月,醇脱氢酶和葡萄糖氧化酶修饰的多孔金电极仅分别丧失初始电流响应的5.0%和4.2%。所有结果说明多孔金是一个良好的构建生物传感器材料。5.一种新型的纳米多孔金修饰电极用于抗坏血酸存在下多巴胺的选择性测定在常规的多巴胺(DA)的电化学检测中,共存的抗坏血酸(AA)往往产生干扰。为了解决这个问题,人们已经尝试了许多修饰电极。在本章工作中我们利用不同孔径的NPG作为电极材料,研究了AA和DA在不通孔径NPG电极上的电化学行为。结果表明,由于NPG/GCE的表面积大,大幅度提高了DA和AA的电化学检测灵敏度。结果还表明,AA的电极氧化是一个扩散控制的过程,而DA的氧化是一个吸附控制过程。这一性质可使两者的氧化峰电位很好地分开,使抗坏血酸存在下多巴胺(DA)的选择性测定成为可能。当使用差分脉冲伏安法(DPV)检测时,检测限为17nM(36信噪比)。该NPG修饰电极具有良好的灵敏度,选择性和重复性。6.辣根过氧化物酶在纳米多孔铜上的固定化及其潜在电化学检测应用本章中我们尝试了利用纳米多孔铜代替多孔金作为酶的固定化载体。孔径大小为100-200nm的纳米多孔铜通过在5%(w/w)的盐酸水溶液中腐蚀铜铝合金制得,并用扫描电镜和氮气吸附等技术对其进行了表征。辣根过氧化物酶通过吸附的方法固定在多孔铜表面。由于酶分子与多孔铜表面可能存在多点作用,与游离酶相比,固定化酶的热稳定性有了很大程度的提高。在50℃下储存2小时,固定化酶仍然保持初始活力的90%,然而游离酶仅保持初始活力的10%。当然,酶与多孔铜表面的接触也使得固定化酶的Km值从0.43 mM增加到0.80 mM,Kcat值从8.1×103min-1降到2.2×103min-1。基于多孔铜电极好的导电性和电催化性能,我们构建了联苯二胺电化学传感器。传感器的线性范围是0.5μM-14.5μM,灵敏度为0.37μAμM-1。此传感器拥有令人满意的重复性和稳定性。在-0.45 V下工作200s,电流值仍能保持初始值的80%。对五个同样方法制备的电极,相对标准偏差为4.5%。所有结果说明多孔铜是一个好的辣根过氧化物酶载体,并且低的价格有利于它的大规模应用。7.腐蚀银铝合金制备单片纳米多孔银作为表面增强拉曼散射基底:结构演变及表面修饰的影响应用SERS技术进行分子的高灵敏度检测依赖于均匀纳米结构金属基底的构建。在本章中,通过化学腐蚀银铝合金的方法制备了稳定均匀的纳米多孔银(NPS)并研究了多孔银结构变化对SERS信号的影响。发现腐蚀条件影响其形态(系带/孔径尺寸)及结晶情况,二者决定了罗丹明6G在NPS上的SERS信号。具有孔径小、Al残余低及结晶良好的NPS可以得到较强SERS信号。室温下Ag30Al70经2.5% HCl腐蚀15分钟并在85℃下陈化15分钟得到的NPS可使罗丹明6G的拉曼信号增强了7.5×105倍。在NPS表面覆盖Ag纳米颗粒后,由于系带与纳米颗粒之间强烈的近场耦合作用,信号可进一步增强至1.6×108倍。

全文目录


摘要  10-14
ABSTRACT  14-20
符号说明  20-21
第一章 绪论  21-41
  1.1 纳米多孔金属  21-22
  1.2 纳米多孔金属的制备方法  22-27
  1.3 生物催化剂酶  27-29
  1.4 酶的固定化原理及应用  29-31
  1.5 本论文的立题依据和研究内容  31-32
  1.6 参考文献  32-41
第二章 漆酶在多孔纳米金上的固定:固定方法和粒度效应的比较研究  41-55
  2.1 引言  41-42
  2.2 实验部分  42-44
    2.2.1 试剂  42
    2.2.2 NPG的制备和表征  42
    2.2.3 漆酶在NPG上的固定  42-43
    2.2.4 固定化漆酶的活性  43
    2.2.5 浸出实验  43
    2.2.6 NPG粒度大小的影响  43
    2.2.7 酶动力学  43-44
  2.3 结果与讨论  44-50
    2.3.1 作为漆酶固定化载体的NPG孔径大小的选择  44-45
    2.3.2 被固定的漆酶量  45-47
    2.3.3 滤出的漆酶的量  47-48
    2.3.4 固定化漆酶的比活度  48
    2.3.5 NPG的粒度对漆酶装载的影响及动力学参数  48-50
  2.4 结论  50-51
  2.5 参考文献  51-55
第三章 漆酶在纳米多孔金表面的固定及直接电子转移  55-67
  3.1 引言  55
  3.2 实验部分  55-57
    3.2.1 试剂和材料  55-56
    3.2.2 制备和表征多孔金  56
    3.2.3 在多孔金表面固定化漆酶  56
    3.2.4 漆酶活力的测定  56
    3.2.5 酶的热稳定性和重复利用性  56
    3.2.6 酶的泄漏情况测定  56-57
    3.2.7 电化学测试  57
  3.3 结果讨论  57-62
    3.3.1 多孔金的表征  57
    3.3.2 孔径大小对固定化酶的影响  57-59
    3.3.3 缓冲液的pH和温度的影响  59
    3.3.4 热稳定性、重复利用性和储存稳定性  59-60
    3.3.5 漆酶修饰多孔金电极的电化学行为  60-62
    3.3.6 电催化还原  62
    3.3.7 漆酶电极的稳定性  62
  3.4 结论  62
  3.5 参考文献  62-67
第四章 固定化木质素过氧化物酶在纳米多孔金表面:酶学性质及通过共同固定化葡萄糖氧化酶来原位释放过氧化氢  67-77
  4.1 引言  67-68
  4.2 试验部分  68-69
    4.2.1 试剂和材料  68
    4.2.2 木质素过氧化物酶  68
    4.2.3 酶的固定化和活力的测定  68
    4.2.4 热稳定性和重复利用性  68
    4.2.5 染料的降解  68-69
  4.3 结果与讨论  69-72
    4.3.1 多孔金固载酶前后的表征  69
    4.3.2 固定化酶的性质  69-70
    4.3.3 GOx和LiP的共同固定来获得高的可持续的LiP活力  70-71
    4.3.4 比较两种过氧化氢的供给策略  71-72
  4.4 结论  72-73
  4.5 参考文献  73-77
第五章 基于酶修饰的纳米多孔金的电化学传感器  77-87
  5.1 引言  77
  5.2 实验部分  77-78
    5.2.1 试剂  77-78
    5.2.2 仪器  78
    5.2.3 制备多孔金和多孔金修饰的电极  78
    5.2.4 酶电极的制作及检测乙醇的葡萄糖  78
  5.3 结果与讨论  78-84
    5.3.1 表征NPG和NPG/GCE  78-79
    5.3.2 电化学氧化NADH和过氧化氢及其检测  79-81
    5.3.3 多孔金电极的稳定性和可能的干扰  81-82
    5.3.4 检测乙醇和葡萄糖  82-84
  5.4 结论  84
  5.5 参考文献  84-87
第六章 一种新型的纳米多孔金修饰电极在抗坏血酸存在下选择性测定多巴胺  87-97
  6.1 引言  87
  6.2 实验  87-88
    6.2.1 试剂和材料  87-88
    6.2.2 NPG的制备和表征  88
    6.2.3 电极的制作  88
    6.2.4 电化学测量  88
  6.3 结果和讨论  88-94
    6.3.1 NPG和NPG/GCE的表征  88-90
    6.3.2 AA和DA在NPG/GCE上的电化学行为  90-92
    6.3.3 DA的测定  92-94
    6.3.4 NPG/GC电极的稳定性和可重用性  94
  6.4 结论  94
  6.5 参考文献  94-97
第七章 固定辣根过氧化物酶在多孔铜表面及其潜在应用  97-107
  7.1 引言  97
  7.2 实验部分  97-99
    7.2.1 试剂  98
    7.2.2 制备和表征多孔铜  98
    7.2.3 在多孔铜表面固定HRP  98
    7.2.4 HRP活力的测定  98
    7.2.5 热稳定性和重复利用性  98-99
    7.2.6 酶泄漏实验  99
    7.2.7 酶修饰的多孔铜电极的制备及电化学测试  99
  7.3 结果与讨论  99-104
    7.3.1 在多孔铜上固定化HRP  99-100
    7.3.2 固定化酶的性质  100-102
    7.3.3 多孔铜电极的电化学活性  102-103
    7.3.4 检测OPD  103-104
  7.4 结论  104
  7.5 参考文献  104-107
第八章 腐蚀银铝合金制备单片纳米多孔银作为表面增强拉曼散射基底:结构演变及表面修饰的影响  107-122
  8.1 引言  107-108
  8.2 实验部分  108-109
  8.3 结果与讨论  109-117
    8.3.1 Ag-Al合金原子比例的选择  109-110
    8.3.2 腐蚀溶液和时间多NPS形貌的影响  110-112
    8.3.3 NPS结构对SERS的影响  112-115
    8.3.4 用Ag NPs修饰的NPS的SERS  115-117
  8.4 结论  117-118
  8.5 参考文献  118-122
致谢  122-123
攻读博士学位期间发表学术论文  123-125
英文论文  125-135
学位论文评阅及答辩情况表  135

相似论文

  1. 基于电穿孔技术的活细胞表面增强拉曼光谱研究,R318.51
  2. 壳聚糖季铵盐金属配合物的热稳定性研究,O634
  3. 氯代甲氧基脂肪酸甲酯的合成及应用研究,TQ414.8
  4. 嗜热菌几丁质结合域及其在酶固定化中应用的研究,Q814
  5. 二羧酸金属有机骨架材料的合成、结构及性质研究,O621.13
  6. 非水体系中甲基吡啶电氧化行为的电化学和拉曼光谱研究,O626.321
  7. 咪唑类离子液体的热分析研究,O626.23
  8. 室温自交联ABS的结构与性能研究,TQ325.2
  9. 甲烷氧化菌甲烷氧化活性的影响因素和甲醇含量测定方法的研究,Q93
  10. α-Fe2O3/Ag核壳结构纳米颗粒的制备及SERS活性研究,TB383.1
  11. 高热稳定性明胶软糖的开发和工艺优化,TQ461
  12. 高温动力学方法筛选提高蛋白质热稳定性的突变位点,Q51-33
  13. SiN_x掺杂SbTe相变存储材料研究,TP333
  14. 乳酸基共聚物/蛭石微晶复合材料的制备和性能研究,TB332
  15. 三参数人体应激检测系统研究,R318.0
  16. 一种新型有机无机杂化介孔材料的合成及对PC/ABS的阻燃研究,TB33
  17. 基于高灵敏度拉曼散射增强效应Au-SiO2多层纳米结构液相基底分析与制备,TB383.1
  18. LSAW传感器及RCA技术在人畜共患性病原体检测中的应用研究,R440
  19. 基于石墨烯材料的新型DNA生物传感器的研制,TP212.2
  20. 金属/锗硅固相反应及其接触特性研究,TN304
  21. 重组α-环糊精葡萄糖基转移酶酶制剂稳定性的研究,Q814

中图分类: > 工业技术 > 一般工业技术 > 工程材料学 > 特种结构材料
© 2012 www.xueweilunwen.com