学位论文 > 优秀研究生学位论文题录展示

羊体不同组织中PAHs和PCBs的污染特征与分布规律

作 者: 罗杰
导 师: 崔兆杰
学 校: 山东大学
专 业: 环境科学
关键词: 多环芳烃 多氯联苯  体内分布 来源分析
分类号: X174
类 型: 博士论文
年 份: 2013年
下 载: 56次
引 用: 0次
阅 读: 论文下载
 

内容摘要


多环芳烃(PAHs)与多氯联苯(PCBs)具持久性、半挥发性、生物蓄积性、高毒性等特点,是《关于持久性有机污染物的斯德哥尔摩公约》中规定的首批控制消除的持久性有机污染物(POPs)。POPs污染已经引起各国政府、学术界和公众的广泛关注,成为国际上倍受关注的新全球性环境问题,是环境经济学、环境法学、环境工程学、环境化学、预防医学、生态毒理学等多学科交叉研究的前沿领域。PAHs和PCBs能够沿食物链蓄积,随植食动物的取食进入到生态系统的高级消费者中,被人类以食品的方式直接进食,进而对人类健康造成严重危害。因此,研究植食动物体内PAHs和PCBs的分布和累积规律,可丰富PAHs和PCBs在生物累积方面的基础理论,为环境管理及食品安全监督提供理论依据,有助于科学评估PAHs与PCBs的潜在环境风险、控制PAHs与PCBs环境影响、保障人体健康和生态安全,具有重要的理论和应用价值。鉴于此,依托山东省环境保护科技计划“山东省POPs污染特征及生物有效性研究”等项目,本研究在详细查阅和系统分析国内外相关研究的基础上,以不同年龄体各组织中的PAHs和PCBs为研究对象,建立了羊体组织中PAHs与PCBs同系物快速准确的分离分析方法,分析了不同年龄羊体各组织中PAHs与PCBs的含量,揭示了羊体内PAHs和PCBs的污染水平、成分特征、分布富集规律及毒性特征,探究了PAHs与PCBs在母体与子代间的分布差异与代际传递;通过对羊体内PAHs与PCBs的浓度与其生存环境介质和饮食中PAHs与PCBs含量的相关性分析,识别了羊体内PAHs与PCBs的主要来源,探索了光催化降解。一、羊体组织中PAHs与PCBs分析方法的建立针对动物样品目标PAHs和PCBs含量低、基体干扰大、难净化等问题,建立了基于加速溶剂萃取(ASE)+皂化-凝胶渗透色谱(GPC)+柱层析联合净化+气相色谱-质谱联用仪或气相色谱(GC/MS-ECD)分析的定性定量分析方法,实现了羊体组织PAHs和PCBs的高效提取、有效分离和准确检测。(1)采用ASE技术,通过优化改进实验条件和参数,实现了羊体组织中PAHs与PCBs高效同步提取,最佳萃取条件为:混合提取溶剂正己烷/丙酮体积比为1:1,萃取温度100℃,静态萃取时间5min。(2)优化建立了皂化+凝胶渗透色谱+硅胶柱/Florisil柱层析联合净化技术:皂化最佳条件为150mLNaOH(1.0mol/L),水浴温度60℃;GPC洗脱液最佳收集时间段为1000-1800s;硅胶柱采用20mL二氯甲烷/正己烷混合溶液(体积比3:7)洗脱收集PAHs,Florisil柱采用10mL正己烷洗脱收集PCBs。净化过程中,16种PAHs动物基质加标回收率为70.5%-113.6%,PCBs的动物基质加标回收率为79.2%-109.0%,净化效果良好,净化过程目标污染物损耗较小,实现了目标化合物与干扰组分的有效分离。(3)通过色谱参数优化、双柱互补分离/质谱定性技术建立了羊体组织中PAHs和PCBs同系物的GC-MS/ECD定性定量分析方法,有效解决了色谱峰共洗脱问题,提高了分析的灵敏度和准确性。16种PAHs动物基质加标回收率在79.8%-122.6%间,样品平行测定相对标准偏差(RSD)为4.8%-17.8%;7种指示性PCBs与12种类二嗯英类PCBs(DL-PCBs)的动物基质加标回收率分别在69.8%-89.7%之间与71.6%-90.6%之间,样品平行测量RSD分别为8.3%-18.5%与3.6%-14.5%。结果均符合美国EPA标准中回收率(70%-130%)及环境样品精密度(RSD<20%)的要求。二、羊体组织中PAHs的污染水平与分布规律(1)羊体PAHs的污染水平与特征成分选择山东某地区48月龄、30月龄、18月龄及2月龄羊为研究对象,每个年龄段包括九只同龄羊,并将九只羊看做一个单体。分析获得了羊体中PAHs的污染水平和成分特征。①PAHs污染水平。16种PAHs的总浓度在48月龄羊中为349.1-14818.7μg/kg湿重;30月龄羊中为262.1-16405.2μg/kg湿重;18月龄羊中为189.7-18263.0μg/kg湿重;2月龄羊中为273.3-16724.7μg/kg湿重。污染水平是其他轻污染地区动物体中PAHs含量的一到二倍,说明研究区域中羊体内PAHs污染不容忽视。②PAHs成分特征。羊体中PAHs以2环和3环的低环芳烃为主,如萘、二氢苊、苊、芴、菲、蒽等,占总PAHs浓度的85.2%-99.0%。高环芳烃主要集中于肾脏、脑和脂肪中,与其他研究结果一致。(2)羊体中PAHs的分布累积规律PAHs在生物体各组织中的富集效果与组织的生理生化特征等有关。本研究以羊的肌肉、肝脏、心脏、肺脏、肾脏、脑和脂肪七种组织作为研究对象,研究揭示了PAHs在羊体中的分布累积规律。①不同组织中PAHs的分布。各组织中16种PAHs总浓度由低到高分别是:2月龄与18月龄羊为肌肉、肺脏、肝脏、心脏、肾脏、脑、脂肪;30月龄与48月龄为肌肉、肝脏、心脏、肺脏、肾脏、脑、脂肪。PAHs在肌肉中的累积程度最低,为189.7-349.1μg/kg湿重,脂肪中累积程度最高,为14818.7-18263.0μg/kg湿重。不同组织中PAHs同系物组成不同,但均以低环芳烃为主,如萘、苊烯、苊、菲、蒽等。②脂肪含量对PAHs累积的影响。利用SPSS13.0对脂肪含量与相应组织中PAHs含量(μg/kg湿重)作相关分析,两者呈显著正相关关系,相关系数为r=0.867,显著性水平p<0.05,证明PAHs易于在脂肪含量较高的组织中富集。③不同年龄羊体中PAHs的分布。不同龄羊体PAHs总浓度水平相近,但总体呈现高龄羊略大与低龄羊的趋势,肺脏中PAHs的浓度随着羊体年龄的增长而增大。④PAHs在母体与子代间的传递。16种PAHs同系物在哺乳期30月龄羊与其子代2月龄羔羊的七种组织之间,均呈极显著正相关关系,由于3个月内的羔羊主要食物来源为母乳,表明PAHs在母体与子代间发生了传递。(3)羊体中PAHs的毒性水平以苯并(a)芘(BaP)的致癌毒性当量值基准,通过计算毒性当量值(TEQBap)来衡量16种PAHs的毒性大小:48月龄、30月龄、18月龄和2月龄羊体中TEQBaP的浓度分别为1.8-196.3μg/kg湿重、0.6-107.5μg/kg湿重、1.1-246.6μg/kg湿重和1.9-172.9μg/kg湿重。蒽与苯并(a)芘在各组织中毒性贡献率最高,可作为羊体组织PAHs的毒性指示物。羊体各组织中只有肌肉中PAHs的毒性当量值低于US EPA基于人类健康提出的推荐浓度(0.67湿重),可见研究区羊体中PAHs可对该地人群健康造成一定危害。三、羊体中PCBs的污染水平与分布规律(1)羊体中PCBs的污染水平与特征成分①PCBs污染水平。7种指示性PCBs的总浓度在48月龄羊体中为100.6-2828.4ng/kg湿重;30月龄羊体中为171.4-4102.1ng/kg湿重;18月龄羊体中为203.2-4167.5ng/kg湿重;2月龄羊体中为217.8-4026.6ng/kg湿重。12种类二噁英类PCBs (DL-PCBs)的总浓度在48月龄羊中为91.9-1392.2ng/kg湿重;在30月龄羊中为89.6-2020.4ng/kg湿重;18月龄羊中为79.3-1453.5ng/kg湿重;2月龄羊中为74.7-1360.6ng/kg湿重。本研究中7种指示性PCBs的浓度约为其他研究中生物体浓度的十分之一,但本文中12种DL-PCBs浓度明显高于大连湾水生生物的PCBs浓度,约为2-5倍。表明羊体受到DL-PCBs的污染较重。②PCBs成分特征。羊体中PCBs以四氯、五氯和六氯联苯为主。其中四氯联苯占19种PCBs总浓度的17.7%-77.0%,五氯联苯占7.4%-43.1%,六氯联苯占5.9%-38.1%。19种PCBs(7种指示性PCBs+12DL-PCBs)同系物中,在羊体各组织中含量最高的为PCB52和PCB126,其次为PCB138、101、28、77、81、118、169。(2)PCBs在羊体中的分布累积规律以羊肌肉、肝脏、心脏、肺脏、肾脏、脑和脂肪七种组织为研究对象,研究揭示了PCBs在羊体中的分布累积规律。①不同组织中PCBs的分布。7种指示性PCBs在肌肉中含量最低,浓度为100.6-217.8ng/kg湿重,脂肪(2215.2-4102.1ng/kg湿重)或脑(2470.0-4167.5ng/kg湿重)中的含量最高。类似的,12种DL-PCBs在肌肉中含量最低,浓度为74.7-91.9ng/kg湿重,脂肪(986.2-2020.4ng/kg湿重)或脑(711.2-1453.5ng/kg湿重)中的含量最高。各年龄段的羊体以PCB52,126为主要组分,其次为PCB101、138、77、81、169。②不同年龄羊体中PCBs的分布。羊体中PCBs的总浓度呈现高龄羊略大与低龄羊的趋势。PCBs的分布在不同年龄羊体中有差异,低龄羊体中以低氯PCBs为主,高龄羊体中高氯PCBs占主导。③脂肪含量对PCBs累积的影响。利用SPSS13.0对脂肪含量与相应组织中7种指示性PCBs和12种DL-PCBs含量(μg/kg湿重)分别进行相关性分析,得到相关系数分别为0.897和0.834,显著性水平均为p<0.05。羊体各组织PCBs浓度与其脂肪含量呈显著正相关,表明PCBs易于在脂肪含量较高的组织中富集。④母体与子代间PCBs的传递。在哺乳期30月龄羊与其对应的2月龄羔羊之间,12种DL-PCBs同系物,在肌肉、肺脏、脑和脂肪之间呈极显著正相关关系,相关系数分别为0.907、0.761、0.916和0.720,显著性水平p<0.01。由于3个月内的羔羊主要食物来源为母乳,表明PCBs在母体与子代间发生了传递。(3) PCBs的毒性当量PCBs的毒性水平以12种DL-PCBs的毒性当量(WHO-TEQ)表示。48月龄、30月龄、18月龄和2月龄PCBs的WHO-TEQs分别为2.5-53.8ng/kg湿重、2.6-69.7ng/kg湿重、2.1-50.5ng/kg湿重和2.0-69.7ng/kg湿重。脑和脂肪的WHO-TEQs当量最高。PCB126在7种组织中占到12种DL-PCBs总当量的97.1%-99.4%,可作为羊体组织PCBs的毒性指示物。四、羊体中PAHs与PCBs的来源解析采用相关分析与理论研究相结合的方法对环境介质(土壤、大气)、饮食因素(三个生长时期野草、玉米叶、玉米果实、小麦、沟渠水)中PAHs和PCBs含量与羊体各组织中PAHs和PCBs的浓度进行研究,识别了羊体中PAHs和PCBs的主要来源。(1)羊体内PAHs的来源分析①羊体各组织与土壤PAHs含量的相关性。肝脏中的PAHs与土壤中PAHs呈极显著相关关系(p<0.01);48月龄羊的肺脏,心脏、肾脏中的PAHs含量与土壤中PAHs呈显著相关性(p<0.05)。②羊体各组织与大气PAHs的相关性。羊的心脏、肌肉、肝脏中的PAHs与采暖季大气中PAHs显著相关(p<0.05)。各组织中PAHs与非采暖季大气中PAHs不显著相关。③羊体各组织与野草、玉米、小麦、饮用水中PAHs的相关性。48月龄羊肺脏中PAHs含量与小麦中PAHs极显著相关(p<0.01),肌肉、心脏中PAHs含量与小麦中PAHs显著相关(p<0.05),48月龄羊与其他饮食因素无显著相关关系;30月龄羊的肌肉、肝脏中PAHs含量与枯草期野草中PAHs极显著相关(p<0.01),肝脏、脑与小麦中的PAHs,脑与沟渠水中PAHs均显著相关(p<0.05);18月龄羊肝脏与枯草期野草中PAHs,肺脏中PAHs与小麦中PAHs显著相关,特别是肝脏、心脏中PAHs与小麦中PAHs极显著相关(p<0.01);2月龄羊肌肉中PAHs与小麦极显著相关(p<0.01),心脏、肾脏中PAHs与小麦中PAHs,脑与沟渠水中PAHs显著相关(p<0.05)。因此,羊体内PAHs的主要来源为采暖季大气、土壤、枯草期野草、小麦和少量沟渠水。(2)羊体内PCBs的来源分析①羊体各组织与土壤PCBs含量的相关性。羊脑、脂肪、肌肉、肝脏、肾脏等组织中PCBs与土壤中PCBs显著相关(p<0.05)。②羊体各组织与大气PCBs的相关性。肌肉、心脏、肺脏、肾脏、脑、脂肪中PCBs含量与采暖季大气中PCBs极显著相关(p<0.01)。肝脏与采暖季大气中PCBs含量显著相关(p<0.05)。羊的各组织中PCBs含量与非采暖季大气中PCBs无显著相关。③羊体各组织与野草、玉米、小麦、饮用水中PCBs的相关性。48月龄羊的肝脏中PCBs与沟渠水中PCBs显著相关(p<0.05),18月龄羊肝脏中PCBs与玉米果实中PCBs显著相关(p<0.05),2月龄羊的肝脏中PCBs与沟渠水中PCBs显著相关(p<0.05)。因此,羊体中PCBs的主要来源为采暖季大气、土壤、沟渠水及玉米果实。五、POPs的光催化降解POPs去除是当前的一个全球性难题,半导体光催化剂有望利用太阳光实现POPs的光催化降解,为更好的利用阳光,合成出可被太阳光激发的光催化剂成为科技工作者的研究目标。碳氮材料具有比表面积大、吸附能力强的优点,被认为是一种有望广泛应用于污染控制领域的新型非金属材料,本研究以Si02和双氰胺为模板与前驱体合成了可被可见光(λ>420nm)激发的铁掺杂的多孔C3N4光催化剂。在可见光下,g-Fe-C3N4和m-Fe-C3N4样品对水中罗丹明B (POPs)降解实验表明:1小时内,g-Fe-C3N4降解了约42%的罗丹明B, m-Fe-C3N4降解了88%的罗丹明B, m-Fe-C3N4对POPs的降解速率远高于g-Fe-C3N4。可见,多孔结构促进了反应物和产物的传质,提高了光催化剂的光催化活性。本研究可为POPs的去除提供一个选择。

全文目录


中文摘要  8-14
ABSTRACT  14-20
符号说明  20-21
第1章 研究综述  21-46
  1.1 多环芳烃多氯联苯的简介  21-26
  1.2 动物组织中PAHs与PCBs的分析方法  26-38
  1.3 动物组织中PAHs与PCBs的污染水平  38-40
  1.4 动物不同组织中PAHs与PCBs的分布规律  40-41
  1.5 动物体中PAHs与PCBs的来源解析  41-42
  1.6 POPs的光催化降解  42-43
  1.7 论文的研究目的意义及主要内容  43-46
第2章 体不同组织中PAHs与PCBs分析方法  46-76
  2.1 实验仪器、材料与试剂  46-48
  2.2 实验方法  48-53
  2.3 结果与讨论  53-74
  2.4 小结  74-76
第3章 羊体中PAHs的污染水平与分布规律  76-92
  3.1 实验材料与方法  76-77
  3.2 羊体中PAHs的污染水平  77-82
  3.3 羊体中PAHs的分布  82-88
  3.4 PAHs毒性当量  88-90
  3.5 小结  90-92
第4章 羊体中PCBs的污染水平与分布规律  92-110
  4.1 实验材料与方法  92
  4.2 羊体中PCBs的污染水平  92-102
  4.3 羊体中PCBs的分布  102-107
  4.4 PCBs的毒性当量  107-108
  4.5 小结  108-110
第5章 羊体中PAHs与PCBs的来源解析  110-128
  5.1 实验材料与方法  110
  5.2 土壤、大气、水、植物中PAHs与PCBs的浓度  110-116
  5.3 土壤及大气与羊体中PAHs与PCBs的相关分析  116-120
  5.4 饮食与羊体内PAHs与PCBs的相关分析  120-126
  5.5 小结  126-128
第6章 POPs的光催化降解  128-135
  6.1 实验材料与方法  128-129
  6.2 结果与讨论  129-134
  6.3 小结  134-135
第7章 结论、展望与创新点  135-141
  7.1 结论和展望  135-139
  7.2 创新点  139-141
参考文献  141-164
致谢  164-165
攻读学位期间发表论文目录  165-166
附件  166-167
外文论文  167-191

相似论文

  1. 羊栖菜、半叶马尾藻生态学特性的初步研究,S917.3
  2. 几种酶对植物代谢多环芳烃的影响,X173
  3. 根系分泌物及其组分对土壤中多环芳烃的活化作用,X53
  4. 利用作物秸秆制备成型生物质活性炭及纤维板,X712
  5. 利用作物秸秆制备高性能吸附材料并用于水中多环芳烃治理,X712
  6. 西藏地区燕麦秸秆与苇状羊茅、多年生黑麦草混合青贮的研究,S816.53
  7. 氮素对高羊茅耐寒性生理机制研究,S688.4
  8. 添加酒糟和糖蜜对箭筈豌豆与多年生黑麦草、苇状羊茅混合青贮发酵品质的影响,S816.53
  9. 三种大型海藻对海水中营养盐供应变化的生理响应研究,S917.3
  10. Rhodococcus sp.R04联苯水解酶性质及反应动力学研究,Q55
  11. 多环芳烃污染土壤的植物—微生物联合修复效应,X53
  12. 优质高羊茅草皮生产技术研究,S688.4
  13. 太湖北部多环芳烃的分布特征及来源解析,X832
  14. 典型工业固体废弃物有毒有害物质的环境效应研究,X705
  15. 忻州挠羊赛事风险管理研究,G852.9
  16. 温度控制离子液体微富集技术在环境分析化学中的应用研究,X132
  17. 土壤样品umu试验前处理方法优化研究及风险评价,X820.4
  18. 孕期高盐对胎羊肠系膜动脉血管细胞钾离子通道的影响,R714.2
  19. 石羊河流域水资源优化配置的数学模型与决策研究,TV213.4
  20. 环境致癌物苯并芘灭活PTEN的机制研究,R730.2
  21. 淮南市大气可吸入颗粒物中多环芳烃的污染特征研究,X513

中图分类: > 环境科学、安全科学 > 环境科学基础理论 > 环境生物学 > 环境动物学
© 2012 www.xueweilunwen.com