学位论文 > 优秀研究生学位论文题录展示

ZrN和ZrC薄膜的微观结构、化学键态、应力、硬度和摩擦学性能关系的研究

作 者: 孟庆南
导 师: 郑伟涛
学 校: 吉林大学
专 业: 材料物理与化学
关键词: ZrN ZrC 摩擦学性能 键态 薄膜结构 微观结构 低摩擦系数 硬度变化 纳米复合结构 氮化锆 电子极化 择优取向 纳米压痕硬度 真实接触面积 纳米复合膜 塑性形变 多层膜结构 磁控 films 溅射制备
分类号: O484.4
类 型: 博士论文
年 份: 2013年
下 载: 126次
引 用: 0次
阅 读: 论文下载
 

内容摘要


氮化锆(ZrN)和碳化锆(ZrC)薄膜具有出色的物理和化学性能使其可以被应用于各种极端条件,如宇航用耐高温材料和核反应中燃料颗粒的涂覆材料。此外,由于其高硬度耐磨损的特点也可以用于切削工具的保护涂层。ZrN和ZrC薄膜的高电导率和优秀的化学稳定性也是其能够胜任滑动电接触器件,如电刷、微电器件,电路开关和机动车的启动器。ZrN和ZrC薄膜可通过多种方法制备,其中最普遍易行的方法是磁控溅射方法。本文中首先将采用反应磁控溅射的方法制备多晶ZrN薄膜,并探究了晶体择优取向、相结构和薄膜应力、硬度之间的关系:在第二章中,通过改变基底偏压增加粒子能量进而向ZrN薄膜中引入不同大小的应力。以应力对ZrN薄膜微观结构和相结构的影响作为着眼点,通过热力学计算探究并建立应力、择优取向演变和相转变之间的关系。热力学计算结果表明应变能是ZrN薄膜择优取向演变和相转变的驱动力,在高应力状态下薄膜总是优先选择低应变能的取向或相生长;由于在沉积薄膜的过程中,残余应力不可避免的会被引入,而残余应力对硬度测量中接触点附近样品的塑性形变行为势必产生影响。因此,在第三章中我们选择ZrN薄膜借助于原子力显微镜对应力与硬度的关系进行研究。通过对比有应力样品和应力释放后样品的最大载荷和接触面积来研究应力在硬度测量过程中的作用,并在此基础上探究应力对纳米压痕硬度测量的影响;在氮化物超硬薄膜的研究中多层膜体系通常表现出超常的硬度,因此在第四章中使用磁控溅射制备了ZrN/SiNx多层膜用以进一步提升ZrN薄膜的硬度,并探究了界面偶极现象对多层膜硬度增强的贡献。首先对ZrN/SiNx双层膜进行XPS深度剖析以表征界面电子状态,其结果表明ZrN/SiNx界面处出现电子极化现象,电子从ZrN层向SiNx层转移。此外,界面极化程度受SiNx层密度的影响。相应ZrN/SiNx多层膜的硬度测量表明多层膜的硬度增强和界面电子极化之间存在一定的内在联系;在实际生产应用中薄膜的耐摩擦性能直接决定了薄膜的使用寿命,ZrN薄膜的硬度优异但在耐磨擦性能上略显薄弱。与氮化物薄膜相比,碳化物薄膜的耐磨损性能更为优秀。因此,在后面的两章中通过磁控溅射制备了ZrC和ZrSiC薄膜,并研究了薄膜中微观结构、化学键态、应力、硬度、摩擦学性能和电学性能之间的关系:在第五章中通过改变溅射过程中CH4流量制备了具有不同碳含量的ZrC薄膜。在碳含量较低时薄膜表现为典型的nc-ZrC/a-C纳米复合结构,当碳含量高于86at.%时薄膜转变为非晶结构。薄膜的力学、摩擦学和电学性能明显依赖于纳米复合结构中a-C的含量。大量的a-C将导致电阻率快速增加且硬度下降,但其润滑作用会使得摩擦系数被大幅度改善。此外a-C相中碳原子的化学键态同样对性能有着一定的影响,较大的sp2/sp3将有助于释放薄膜的应力和改善电学性能。与其他典型的过渡金属碳化物纳米复合膜相比(如nc-MeC/a-C, Me=Ti, Nb)ZrC薄膜表现出更低的摩擦系数。尽管ZrC薄膜表现出优秀的耐磨擦性能,但其硬度与ZrN薄膜相比仍有所下降,而Si的加入将有可能在维持低摩擦系数的同时改善ZrC薄膜的硬度。因此在第六章中使用共溅射制备了ZrSiC非晶薄膜,系统的讨论了薄膜成分和化学键态的变化对薄膜结构和性能的影响,并与第五章中ZrC薄膜的结果进行对比。分析结果表明ZrSiC的电阻率表现出与ZrC类似的变化趋势,但硬度和摩擦系数的结果明显不同。在ZrSiC中硬度对a-C含量变化不敏感却强烈的依赖于Si-C键的含量。ZrSiC薄膜在摩擦过程中存在明显的摩擦化学反应,转移层中a-C的含量对摩擦性能的改善起着不可忽视的作用。但另一方面,剥层磨损的出现将抑制甚至恶化薄膜的摩擦学性能。转移层中a-C的含量以及剥层磨损的程度共同支配着ZrSiC的摩擦系数。

全文目录


中文摘要  5-7
Abstract  7-14
第一章 绪论  14-73
  1.1 溅射与薄膜生长  14-18
    1.1.1 等离子体的形成  14
    1.1.2 粒子轰击靶材  14-16
    1.1.3 原子的转移  16
    1.1.4 成核与生长  16-18
  1.2 薄膜的应力  18-33
    1.2.1 成核阶段应力的产生机制  19-21
    1.2.2 薄膜生长过程中拉应力的产生机制  21-25
    1.2.3 薄膜生长过程中压应力的产生  25-28
    1.2.4 外应力的产生机制  28-30
    1.2.5 薄膜应力的测量  30-33
  1.3 薄膜的硬度  33-44
    1.3.1 纳米压痕基础理论  34-37
    1.3.2 材料的表面接触形变  37-39
    1.3.3 在压痕过程中薄膜的断裂现象  39-40
    1.3.4 应力对硬度的影响  40-44
  1.4 薄膜的摩擦与磨损  44-54
    1.4.1 固相润滑原理  44-46
    1.4.2 碳基润滑材料  46-48
    1.4.3 润滑氧化物  48
    1.4.4 过渡族金属二硫化物(TMD)  48-50
    1.4.5 薄膜的磨损  50-54
  1.5 Ⅳ-B 族过渡金属氮化物与碳化物  54-60
    1.5.1 氮化锆  54-58
    1.5.2 碳化锆基复合膜  58-60
  1.6 本文的选题依据与研究内容  60-61
  参考文献  61-73
第二章 应力对 ZrN 薄膜择优取向以及相结构的影响  73-90
  2.1 前言  73-74
  2.2 实验  74-75
    2.2.1 实验条件  74
    2.2.2 表征方法  74-75
  2.3. 实验结果  75-82
    2.3.1 微观结构和化学键  75-81
    2.3.2 应力与硬度  81-82
  2.4 分析与讨论  82-85
    2.4.1 择优取向和相结构  82-85
    2.4.2 硬度  85
  2.5 本章小结  85
  参考文献  85-90
第三章 应力对 ZrN 薄膜硬度的影响  90-113
  3.1 前言  90-92
  3.2 实验方法  92-93
  3.3 结果与讨论  93-108
    3.3.1 残余应力与微观结构  93-97
    3.3.2 应力对硬度测试的影响  97-108
  3.4 本章小结  108
  参考文献  108-113
第四章 ZrN/SiNx 薄膜的界面电子结构与硬度  113-125
  4.1 前言  113
  4.2 实验条件  113-115
  4.3 结果与讨论  115-122
  4.4 本章小结  122-123
  参考文献  123-125
第五章 非晶碳含量和化学键态ZrC 薄膜结构和性能的影响  125-154
  5.1 前言  125-126
  5.2 实验与表征  126-127
    5.2.1 样品沉积  126
    5.2.2 微观结构、成分和形貌  126
    5.2.3 力学、摩擦学和电学性能  126-127
  5.3 结果与讨论  127-145
    5.3.1 微观结构、成分和形貌  127-137
    5.3.3 力学、摩擦学和电学性质  137-145
  5.4 本章小结  145-146
  参考文献  146-154
第六章 ZrSiC 薄膜的制备及表征  154-178
  6.1 前言  154-155
  6.2 实验与表征  155-156
    6.2.1 样品沉积  155
    6.2.2 微观结构、成分和形貌  155-156
    6.2.3 力学、摩擦学和电学性能  156
  6.3 结果与讨论  156-175
    6.3.1 化学成分和化学键态  156-161
    6.3.2 硬度  161-164
    6.3.3 摩擦系数与磨损机制  164-174
    6.3.4 电阻率  174-175
  6.4 本章小结  175-176
  参考文献  176-178
第七章 本文总结  178-180
攻读博士学位期间发表的学术论文  180-182
致谢  182

相似论文

  1. 磁控溅射法制备光催化TiO_2薄膜的研究,TB43
  2. ZAO透明导电薄膜的制备与性能,TB43
  3. 基于磁控溅射方法制备二氧化钛薄膜及其亲水特性研究,TB383.2
  4. LSGM电解质薄膜制备与电化学性能研究,TM911.4
  5. 铜镍合金为衬底化学气相沉积法制备石墨烯研究,O484.1
  6. 磁控电抗器无功补偿技术在电力系统中的应用,TM761.1
  7. 含Cu硅基铁电电容器集成过程中Ni-Al阻挡层的研究,TM535.1
  8. 聚碳酸酯(PC)上沉积类金刚石膜的性能研究,TB383.2
  9. 镀锌板表面磁控溅射法制备Al-Mg合金镀层及其性能研究,TG174.4
  10. 用于硅基含铜铁电电容器集成的Ti-Al阻挡层,TM535.1
  11. BiFeO_3靶材及薄膜的制备与性能研究,O484.1
  12. 掺杂ZnO稀磁材料薄膜的制备工艺及室温磁性研究,O484.1
  13. AIN薄膜中频溅射制备及体声波谐振器研制,TN713
  14. 磁控溅射法低温制备ITO透明导电薄膜工艺研究,TN304.055
  15. 直流磁控溅射有限双极性电源并联研究,TN86
  16. 阳极腐蚀多孔硅的光致发光和正电子湮没谱学研究,TN304.12
  17. 基于二氧化铪的高介电常数薄膜的制备与研究,TN386.1
  18. 直流磁控溅射工艺及Zr-Ni、Zr-Cu非晶合金溅射膜结构的研究,TB43
  19. Ti6Al4V表面CrAlN膜的制备与表征,TG174.444
  20. 基于二氧化锡的P-N结制备及其性能研究,TN304.055

中图分类: > 数理科学和化学 > 物理学 > 固体物理学 > 薄膜物理学 > 薄膜的性质
© 2012 www.xueweilunwen.com