学位论文 > 优秀研究生学位论文题录展示

ZnO-TiO_2系介电陶瓷/NiZnCu铁氧体叠层低温共烧兼容特性研究

作 者: 刘向春
导 师: 田长生
学 校: 西北工业大学
专 业: 材料学
关键词: 钛酸锌 低温烧结 掺杂 界面扩散 容差因子 叠层共烧 介电性能 交流阻抗谱
分类号: TM277
类 型: 博士论文
年 份: 2007年
下 载: 463次
引 用: 2次
阅 读: 论文下载
 

内容摘要


近年来,电子元件随科技发展和市场需求不断向片式化、小型化、多功能化等趋势发展,其中,片式化是小型化、多功能化发展的基础。因此,片式化材料和器件的研究成为热点。在片式化多层结构中,为了使用银、铜内电极,降低元件制作成本,低温共烧陶瓷(Low Temperature Co-fired Ceramics,LTCC)技术成为近年来兴起的一种令人瞩目的多学科交叉的整合组件技术。制造片式多功能器件,例如EMI多层片式LC滤波器的关键技术是异种材料间的共烧兼容性。本文选取ZnTiO3系介电材料和NiZnCu铁氧体材料作为研究对象,从介电材料的低温烧结掺杂改性入手,通过调节成型压力,成型方式,叠层结构,以及采用零收缩技术,零收缩差技术,加入中间层等工艺技术和结构的改变,来研究层状共烧体的收缩率匹配,界面反应,界面扩散介电性能,最终解决两种材料之间的共烧兼容问题,获得可低温烧结(900℃)的无翘曲变形,无开裂等缺陷且界面结合良好的叠层共烧体。采用不同原料制备钛酸锌陶瓷,发现陶瓷的低温烧结对原料活性极为敏感。添加适量V2O5和WO3烧结助剂结合采用化学法工艺有效地将钛酸锌陶瓷的烧结温度降低到900℃以下;前者主要是液相烧结降温机制,后者属于固相反应烧结降温机制;900℃烧结的掺杂1.0%V2O5陶瓷的微波介电性能为Q×f=8061GHz,εr=21.3。V2O5-B2O3复合掺杂将钛酸锌陶瓷烧结温度从1100℃降至900℃以下,与V2O5掺杂相比,V2O5-B2O3复合掺杂试样的介电常数和介电损耗均减小。Mg对ZnTiO3的A位取代增加了六方相的热稳定性,但同时提高了陶瓷的烧结温度;V2O5掺杂结合化学法有效的将(Zn,Mg)YiO3(ZMT)陶瓷烧结温度从1200~1300℃降至900℃以下。875℃烧结的ZMT3陶瓷介电常数εr=22,介电损耗tanδ=5.7×10-4。Sn对ZnTiO3的B位取代促进了六方相向立方固溶相Zn2(Ti1-xSnx)O4转变,900℃时,Sn的固溶限为0.08mol。V2O5掺杂结合化学法有效的将ZnO-(1-x)TiO2-xSnO2陶瓷烧结温度从1300℃降至1000℃;900℃烧结的试样,当x=0.12时,取得ε的最大值和tanδ的最小值,分别为εr=29,tanδ=9.86×10-5,具有很好的应用前景。建立了ABO3型钛铁矿的容差因子计算公式,经过分析具有钛铁矿结构的MgTiO3、NiTiO3、CoTiO3、ZnTiO3以及(Zn1-x,Mx)TiO3(M为Mg、Ni、Co)复合钛铁矿的稳定性,验证了容差因子公式的合理性;通过对已发现的具ABO3型钛铁矿结构的化合物的统计分析,提出形成稳定钛铁矿结构的经验容差因子范围和经验电负性差值,即:t>0.80,e>1.465。采用拉膜工艺和二次烧成法制备出无分层、翘曲、开裂等缺陷的ZT(ZnTiO3)/NZC(NiZnCu)叠层共烧体;共烧体界面处发生了反应扩散。通过对ZMT3((Zn0.7Mg0.3)TiO3)和NZC烧结动力学研究,建立了两种材料的收缩动力学方程;研究发现,ZMT3/NZC共烧体产生翘曲与否与两种材料在烧结温度时的收缩匹配程度有重要关系,而烧结前期径向收缩率差异的影响不明显。建立了描述ZMT3/NZC共烧体产生翘曲变形的几何学方程。研究发现,收缩率差越大,翘曲程度越严重;收缩率随成型压力增大呈二次多项式分布,通过对叠层体施加单向压力,利用模压时产生的压力梯度来调节两种材料的收缩率不匹配,明显减小了共烧体翘曲程度。选取HH2(ZMT3和NZC按重量比1∶1混合粉)和ZMT1((Zn0.9Mg0.1))TiO3)作为中间层材料,采用单向模压成型方式,获得了无翘曲变形,无开裂的ZMT3/HH2/NZC和ZMT3/ZMT1/NZC叠层共烧体。在叠层共烧体的四组界面处均发生界面扩散现象;采用半无限大互扩散偶模型,建立了互扩散偶中离子浓度分布函数,计算了离子扩散系数和扩散激活能;通过理论计算拟合了Zn2+,Ti4+,Fe3+,Ni2+离子的归一化浓度分布,拟合结果和实验结果基本吻合。实验结果表明,同一种离子,在不同的扩散偶中,在不同温度下,其扩散系数有明显不同,总体来说,各离子扩散系数随扩散偶的变化趋势为:HH2/NZC>ZMT1/NZC>ZMT3/HH2;在ZMT1/NZC扩散偶中,扩散激活能大小为:Qd(Fe3+)>Qd(Ti4+)>Qd(Ni2+)>Qd(Zn2+);900℃时,扩散系数大小为:D(Zn2+)>D(Ni2+)>D(Ti4+)>D(Fe3+)。提出零收缩差“三明治”叠层共烧体结构模型,实验结果表明:以收缩率大的ZMT3材料作为夹层材料,以收缩率相对小的NZC材料作为收缩控制层,可以防止裂纹,翘曲变形等缺陷出现,获得界面结合紧密,无翘曲变形、开裂等缺陷的共烧体;通过比较无扩散共烧体的理论拟合密度与实际共烧体密度之间的差异,提出密度修正因子k,k越接近于零,则扩散层厚度越小,当密度修正因子k为零时,表明没有扩散层出现;界面离子互扩散引起界面处密度下降,只要参予共烧的两种材料之间存在密度差异和界面扩散,就会引起界面致密度下降。对叠层共烧体介电性能的研究表明,“三明治”叠层共烧体的介电损耗小于ZT/NZC和ZMT3/ZMT1/NZC与ZMT3/HH2/NZC,但是介电常数相应也小:ZMT3/ZMT1/NZC与ZMT3/HH2/NZC具有最大的介电常数,但是介电损耗也最大。

全文目录


摘要  4-6
ABSTRACT  6-9
本文主要创新成果  9-10
物理量名称及符号表  10-11
目录  11-15
第一章 绪论  15-33
  1.1 研究背景及意义  15-16
  1.2 ZnO-TiO_2系介电陶瓷研究概述及性能指标  16-22
    1.2.1 ZnO-TiO_2陶瓷相结构的研究  16-18
    1.2.2 特殊工艺合成单相ZnTiO_3陶瓷的研究  18
    1.2.3 ZnO-TiO_2陶瓷的掺杂改性研究  18-20
    1.2.4 ZnO-TiO_2系高频介电陶瓷低温烧结研究  20
    1.2.5 ZnO-TiO_2系介电陶瓷的主要性能指标  20-22
  1.3 NiZn铁氧体材料概述  22-24
    1.3.1 NiZn铁氧体的晶体结构  23-24
    1.3.2 NiZn铁氧体的低温烧结  24
  1.4 异种材料共烧研究概述  24-26
  1.5 本文的主要研究内容及技术路线  26-27
  参考文献  27-33
第二章 实验方法  33-40
  2.1 陶瓷试样的制备工艺  33-35
  2.2 陶瓷试样的密度  35-36
  2.3 陶瓷试样的径向收缩率  36
  2.4 材料相组成的测试与分析  36
  2.5 热分析  36-37
  2.6 微观组织及成分分析  37
    2.6.1 透射电镜及电子衍射分析  37
    2.6.2 扫描电镜及能谱分析  37
  2.7 陶瓷试样的颗粒尺寸  37-38
  2.8 陶瓷试样介电性能测试  38
    2.8.1 陶瓷试样低频介电性能测试  38
    2.8.2 陶瓷试样微波介电性能测试  38
  参考文献  38-40
第三章 钛酸锌陶瓷的低温烧结  40-64
  3.1 引言  40
  3.2 实验过程  40-41
  3.3 实验结果与讨论  41-60
    3.3.1 原料活性对ZnTiO_3陶瓷烧结的影响  41-42
    3.3.2 WO_3和V_2O_5掺杂钛酸锌陶瓷的低温烧结及其机制  42-47
    3.3.3 V_2O_5对ZnTiO_3陶瓷点阵参数的影响  47-48
    3.3.4 WO_3和V_2O_5掺杂钛酸锌陶瓷的介电性能  48-50
    3.3.5 V_2O_5-B_2O_3复合掺杂钛酸锌陶瓷的低温烧结、相转变及晶粒生长动力学特性  50-60
  3.4 本章小结  60-61
  参考文献  61-64
第四章A 位及B位离子取代对ZnTiO_3陶瓷相结构、烧结特性及介电性能的影响  64-90
  4.1 引言  64
  4.2 Mg、Sn取代量及助烧剂加入量  64-65
  4.3 ZMT陶瓷的低温烧结、相结构和介电性能  65-71
    4.3.1 V_2O_5掺杂量对ZMT陶瓷烧结密度的影响  65-66
    4.3.2 Mg含量对ZMT陶瓷烧结密度的影响  66-67
    4.3.3 Mg含量对ZMT陶瓷相组成的影响  67-69
    4.3.4 ZMT陶瓷的显微组织  69-70
    4.3.5 ZMT陶瓷的介电性能  70-71
  4.4 ZnO-(1-x)TiO_2-xSnO_2陶瓷的相结构、低温烧结和介电性能  71-79
    4.4.1 ZnO-(1-x)TiO_2-xSnO_2陶瓷的相结构  71-75
    4.4.2 ZnO-(1-x)TiO_2-xSnO_2陶瓷的显微组织形貌  75-76
    4.4.3 ZnO-(1-x)TiO_2-xSnO_2陶瓷的密度及收缩率  76-77
    4.4.4 ZnO-(1-x)TiO_2-xSnO_2陶瓷的介电性能  77-79
  4.5 ABO_3型钛铁矿结构材料的容差因子  79-85
    4.5.1 引言  79-80
    4.5.2 ABO_3钛铁矿容差因子的建立  80-81
    4.5.3 ABO_3钛铁矿结构稳定性分析  81-85
  4.6 本章小结  85-86
  参考文献  86-90
第五章 ZnTiO_3介电陶瓷与NiZnCu铁氧体叠层低温共烧行为的研究  90-99
  5.1 引言  90
  5.2 ZT介电陶瓷和NZC铁氧体的低温烧结行为  90-93
  5.3 ZT/NZC共烧体的界面扩散和界面反应  93-96
  5.4 ZT/NZC叠层共烧体的介电性能  96-97
  5.5 本章小结  97
  参考文献  97-99
第六章 ZMT介电陶瓷与NZC铁氧体叠层低温共烧行为的研究  99-121
  6.1 引言  99
  6.2 ZMT3/NZC叠层低温共烧行为  99-108
    6.2.1 ZMT3和NZC烧结动力学  99-102
    6.2.2 ZMT3/NZC叠层共烧体的翘曲分析  102-106
    6.2.3 ZMT3/NZC的叠层低温共烧  106-108
  6.3 ZMT3/HH2/NZC和ZMT3/ZMT1/NZC叠层低温共烧行为  108-116
    6.3.1 ZMT3/HH2/NZC和ZMT3/ZMT1/NZC共烧体的界面显微组织  108-110
    6.3.2 ZMT3/HH2/NzC和ZMT3/ZMT1/NzC共烧体的界面扩散  110-116
  6.4 ZMT3/HH2/NZC和ZMT3/ZMT1/NZC叠层共烧体的介电性能  116-118
  6.5 本章小结  118-119
  参考文献  119-121
第七章 ZMT3/NZC/ZMT3与NzC/ZMT3/NZC"三明治"结构叠层体低温共烧研究  121-142
  7.1 引言  121-123
  7.2 "三明治"叠层结构的设计  123-125
  7.3 "三明治"叠层结构共烧体的显微组织形貌  125-127
  7.4 裂纹产生的机制  127-128
  7.5 "三明治"叠层结构共烧体的界面扩散  128-131
  7.6 "三明治"叠层结构共烧体的密度  131-134
  7.7 "三明治"叠层结构共烧体的介电性能  134-138
  7.8 不同类型叠层共烧体介电性能总结  138-139
  7.9 本章小结  139
  参考文献  139-142
第八章 全文主要结论和进一步研究工作的建议  142-144
  6.1 全文主要结论  142-143
  6.2 进一步研究工作建议  143-144
攻读博士学位期间发表论文与申请的专利  144-148
致谢  148-149

相似论文

  1. 钛酸盐光催化剂的制备及光催化分解水性能,O643.36
  2. 稀土元素掺杂Ca3Co4O9与Ag复合材料的制备及热电性能,TQ174.1
  3. 静电纺丝法制备TiO2及其光催化行为的研究,O614.411
  4. 钛酸钡基NTC热敏陶瓷电阻的制备与研究,TQ174.1
  5. 掺杂锐钛矿型二氧化钛光催化性能的第一性原理计算,O643.36
  6. Bi、N共掺杂TiO2的制备及性能的研究,O614.411
  7. 功能化纳米二氧化钛多孔材料的制备、表征及性能研究,TB383.1
  8. 有序多孔TiO2薄膜的制备及其性能研究,TB383.2
  9. 一维纳米TiO2的制备及染料废水脱色研究,TB383.1
  10. 锂离子层状正极材料LiMO2(M=Co,Ni,Mn)的第一性原理的研究,TM912
  11. 铁、镧掺杂纳米TiO2的制备及光催化性能研究,O614.411
  12. 石墨烯制备及其缺陷研究,O613.71
  13. 锂电池负极材料烧成用氧化铝坩埚的开发研究,TQ174.6
  14. 基片参数对微带带通滤波器传输特性影响研究,TN713.5
  15. 多维电荷传输基团修饰铱配合物的设计、合成及光电特性,O627.8
  16. ZnO掺杂效应的第一性原理研究,O614.241
  17. 高性能液晶环氧树脂改性热固性树脂的研究,TQ323.5
  18. Tm和Dy掺杂的YSZ涂层制备与发光性能研究,TG174.442
  19. TiO2光催化剂的掺杂改性及应用,O643.36
  20. 低温快烧结晶釉的制备与性能,TQ174.65
  21. 纳米多孔玻璃基复合发光材料的研究,TB383.1

中图分类: > 工业技术 > 电工技术 > 电工材料 > 磁性材料、铁氧体 > 铁氧体、氧化物磁性材料
© 2012 www.xueweilunwen.com