学位论文 > 优秀研究生学位论文题录展示

纳米活性界面构建新方法用于电化学生物传感器设计

作 者: 雷存喜
导 师: 俞汝勤;沈国励
学 校: 湖南大学
专 业: 分析化学
关键词: 电化学生物传感器 纳米Au活性界面 生物材料固定 聚离子静电相互作用 快速电化学免疫分析:无机-有机杂化膜
分类号: TP212
类 型: 博士论文
年 份: 2005年
下 载: 497次
引 用: 2次
阅 读: 论文下载
 

内容摘要


基于生物识别的高度专一性与电化学信号检测的放大作用相结合的电化学生物传感器,具有灵敏度高、选择性好、易于微型化和自动化等优点,在临床诊断、生物分析、环境监测等领域具有广泛的应用前景。在电化学生物传感器的研制中,一个关键的技术就是如何将生物材料稳定、高活性地固定到基体电极表面,构成生物传感器的敏感膜。本研究工作致力于发展新型生物材料固定方法,以达到改进固定生物材料活性、延长传感器使用寿命等目的,主要完成了以下研究工作:1、 发展了3种在电极表面形成纳米Au活性界面的新方法,并用于固定酶或免疫试剂,构建电化学酶或免疫传感器。(1) 用壳聚糖修饰石墨粉,用固体石蜡作粘结剂,制备得到壳聚糖修饰的碳糊电极(CCPE),壳聚糖分子中含有丰富的-NH2,因此,所制备CCPE表面含有大量-NH2,而-NH2可以与纳米Au强静电结合,于是在CCPE表面形成稳定的纳米Au层。在第2章中,报道了基于CCPE支持的纳米Au层固定辣根过氧化物酶(HRP)制备H2O2生物传感器,负电性的纳米Au层可以稳定固定正电性的HRP,并有效保持其生物活性,制备得到性能良好的传感器,对H2O2测定的线性范围为1. 22×10-5-2. 43×10-3mol/L,灵敏度为0. 013A·L/mol·cm2,使用寿命大于3周。因为抗体蛋白质含有-SH,易于在Au或纳米Au表面固定,第7章中报道了用CCPE支持的纳米Au层作免疫传感界面,用于直接吸附固定抗体及进行免疫反应。分析步骤包括首先将日本血吸虫抗体吸附固定在纳米Au层表面,用牛血清白蛋白封闭,通过竞争型免疫反应方式将待测血吸虫抗原和酶标抗原一起结合到电极表面,最后进行电化学检测。研究表明:纳米Au层是合适的免疫分析传感界面。这种方法有以下几个优点:简便的纳米Au层形成方法、抗体易于固定并能有效保持固定抗体的生物活性。检测血吸虫抗原的线性范围和下限分别为:0. 11-22. 4μg/mL和0. 06 μg/mL;一次免疫分析完成后,结合到电极表面的免疫复合物可以用0. 5 mol/L的NaCl-NaOH(pH 12) 溶液洗涤除去,再生纳米Au层用于下一次分析。(2) 利用壳聚糖具有很强成膜能力的性质,在玻碳电极表面首先形成壳聚糖膜,膜表面丰富的-NH2与纳米Au强静电结合,在玻碳电极表面获得稳定的纳米Au修饰层。用形成的纳米Au层固定HRP单酶,可以制得测定线性范围为6. 1×10-6-1. 8×10-3mol/L的H2O2生物传感器,使用寿命在1个月以上;纳米活性界面构建新方法用于电化学生物传感器设计若同时固定HRP和葡萄糖氧化酶(Gox),则制备得到HRP/Gox双酶葡萄糖生物传感器,对葡萄糖测定的线性范围为4.8 x 10一4一1.2 x 10一2 mol/L,此研究内容列于第3章。 (3)用含一SH的硅烷化试剂:3一琉基丙基一三甲氧基硅烷作溶胶一凝胶单体,石墨粉作导电材料,制备得到含一SH的溶胶一凝胶碳糊电极(MCCE),电极表面丰富的一SH可以与纳米Au共价结合,于是在MCCE表面形成共价修饰的纳米Au层。第4章报道了基于MCCE支持的纳米Au层固定HRP制备HZO:生物传感器,研究表明:纳米Au层可以稳定、高活性地固定酶,传感器制备操作简便,具有快速反应和使用寿命长等特点,可在1.22 X10一5一1.10X10一3mol/L范围内对H20:进行检测,反应时间小于85,灵敏度可达。.29A.L/mol.c扩,使用寿命长达5周。第6章报道了MccE支持的纳米Au层作免疫传感界面用于分析检测人补体C3,测定线性范围是:0.08~5.6料g/mL,检测限为0.08林g/mL。 2、近年来,用溶胶一凝胶膜包埋生物材料制备生物传感器引起人们的关注,但纯粹的硅溶胶一凝胶膜存在易破裂和易从电极表面脱落等缺点,研究表明:将天然或合成有机聚合物掺杂到无机溶胶一凝胶膜,形成无机/有机杂化膜,是解决这一问题的有效途径。在第5章中,首次报道了将负电性的天然聚合物褐藻酸钠掺杂到硅溶胶一凝胶膜,形成一种新型的无机/有机杂化膜,并用于在玻碳电极表面包埋酪氨酸酶,制备苯酚生物传感器。研究表明:掺杂褐藻酸钠,可以明显改进硅溶胶一凝胶膜性能,有效保持被包埋酶的生物活性,所制备生物传感器测定苯酚的线性范围为3.4~93.1林mol/L,传感器的使用寿命在3周以上。 3、在第8章中,介绍了基于带相反电荷的天然聚离子强静电相互作用分离免疫复合物的免疫分析新方法。用CNBr交联方法将转铁蛋白抗体与负电性的褐藻酸钠共价交联,在液相均相条件下,负载转铁蛋白抗体的褐藻酸钠、分析物转铁蛋白和酶标转铁蛋白进行竞争型免疫反应,可以明显缩短免疫培育时间;然后,将表面正电性的包埋壳聚糖的碳糊电极置入免疫反应体系,聚阳离子(壳聚糖)与聚阴离子(褐藻酸钠)之间的强静电相互作用使负载到褐藻酸钠上的免疫复合物快速结合到电极表面,最后进行电化学检测获取响应信号。本研究工作将均相免疫反应与快速异相分离相结合,建立了一种快速、灵敏的免疫分析新方法,测定转铁蛋白的线性范围为1.9一78.8拼g/mL。关键词:电化学生物传感器;纳米Au活性界面;生物材料固定;聚离子静电 相互作用;快速电化学免疫分析;无机一有机杂化膜

全文目录


摘要  8-10
Abstract  10-14
第1章 绪言  14-24
  1.1 生物传感器基本工作原理  14-15
  1.2 生物传感器分类  15-16
  1.3 构建生物传感器的生物材料固定技术  16-18
    1.3.1 常用的生物材料固定方法  16-18
    1.3.2 近期生物材料固定新方法简介  18
  1.4 纳米材料在化学/生物分析及传感中的应用  18-22
    1.4.1 用纳米颗粒标记生物材料  19-20
    1.4.2 用纳米修饰层的催化作用构建化学/生物传感器  20
    1.4.3 通过掺杂纳米粒子改进化学/生物传感器性能  20-21
    1.4.4 构建纳米活性界面用于固定生物材料  21-22
    1.4.5 纳米颗粒用于化学/生物分析与传感的一些最新发展  22
  1.5 本研究工作的构思  22-24
第2章 基于壳聚糖修饰碳糊电极支持的纳米金层固定辣根过氧化物酶的过氧化氢传感器研制  24-36
  2.1 引言  24-25
  2.2 实验部分  25-27
    2.2.1 实验试剂与仪器  25
    2.2.2 纳米 Au溶胶的制备  25-26
    2.2.3 CCPE的构造  26
    2.2.4 H_2O_2生物传感器的构造  26-27
  2.3 结果与讨论  27-35
    2.3.1 基于 CCPE支持的纳米 Au层固定 HRP的酶电极构造  27
    2.3.2 对苯二酚在基于纳米 Au层固定 HRP的酶电极上的电化学特征  27-29
    2.3.3 计时安培测定操作参数的优化  29-32
    2.3.4 H_2O_2生物传感器性能  32-34
    2.3.5 H_2O_2生物传感器储存稳定性  34
    2.3.6 生物传感器表观米氏常数的测定  34-35
    2.3.7 生物传感器测定的干扰  35
  2.4 小结  35-36
第3章 基于修饰的玻碳电极表面形成纳米活性界面固定酶的过氧化氢和葡萄糖传感器研制  36-46
  3.1 引言  36-37
  3.2 实验部分  37-39
    3.2.1 试剂与溶液  37-38
    3.2.2 仪器与测量  38
    3.2.3 纳米 Au活性界面固定酶的 H_2O_2和葡萄糖传感器构建  38-39
  3.3 结果与讨论  39-45
    3.3.1 纳米 Au活性界面固定酶的 H_2O_2和葡萄糖传感器构建  39
    3.3.2 电子媒介对苯二酚在 HRP修饰电极上的电化学行为  39-41
    3.3.3 HRP修饰电极测定参数的优化  41-42
    3.3.4 HRP单酶修饰电极测定 H_2O_2反应特征及校正曲线  42-43
    3.3.5 HRP单酶修饰电极性能特征  43
    3.3.6 HRP/ Gox双酶葡萄糖生物传感器  43-45
  3.4 小结  45-46
第4章 基于功能化溶胶-凝胶碳糊电极形成的纳米金层固定辣根过氧化物酶的过氧化氢传感器研制  46-56
  4.1 引言  46-47
  4.2 实验部分  47-48
    4.2.1 试剂、溶液与测定  47
    4.2.2 疏基功能化的溶胶-凝胶碳糊电极制备  47
    4.2.3 H_2O_2生物传感器的构建  47-48
  4.3 结果与讨论  48-55
    4.3.1 MCCE支持纳米 Au用于固定 HRP的 H_2O_2传感器的构建  48-49
    4.3.2 基于纳米 Au层固定酶的 HRP电极对 H_2O_2的催化还原  49-50
    4.3.3 影响 H_2O_2计时安培测量参数的优化  50
    4.3.4 基于纳米 Au层固定酶的 HRP电极对 H_2O_2测定的反应性能  50-52
    4.3.5 传感器的测定重复性、制备重现性及储藏稳定性  52-53
    4.3.6 温度对传感器测定的影响  53-54
    4.3.7 H_2O_2传感器的选择性  54-55
  4.4 小结  55-56
第5章 基于硅溶胶-凝胶/褐藻酸钠复合膜包埋酪氨酸酶的苯酚传感器研制  56-64
  5.1 引言  56-57
  5.2 实验部分  57-58
    5.2.1 试剂与溶液  57
    5.2.2 装置与测量  57
    5.2.3 MTMOS/褐藻酸钠溶胶的制备  57-58
    5.2.4 基于 MTMOS/褐藻酸钠复合膜包埋酶的传感器制备  58
  5.3 结果与讨论  58-63
    5.3.1 基于硅凝胶/褐藻酸钠杂化膜包埋酪氨酸酶的传感器构建  58
    5.3.2 苯酚在酪氨酸酶修饰电极上的循环伏安行为  58-60
    5.3.3 苯酚酶传感器测定参数的优化  60-61
    5.3.4 酪氨酸酶电极对苯酚的响应  61-63
    5.3.5 酪氨酸酶电极的稳定性  63
  5.4 小结  63-64
第6章 利用溶胶-凝胶碳糊电极表面形成的纳米金层作免疫传感界面的补体Ⅲ安培传感器研制  64-73
  6.1 引言  64-65
  6.2 实验部分  65-68
    6.2.1 试剂与溶液  65-66
    6.2.2 HRP标记 C_3的制备  66
    6.2.3 琉基功能化的溶胶-凝胶碳糊电极支持纳米金层的制备  66
    6.2.4 免疫分析程序  66-67
    6.2.5 电化学测量  67
    6.2.6 免疫电极表面纳米 Au层的再生  67-68
  6.3 结果与讨论  68-72
    6.3.1 免疫分析程序的优化  68-69
    6.3.2 最佳 HRP-C_3浓度的确定  69-70
    6.3.3 结合到传感器表面酶标活性测试  70-71
    6.3.4 传感器分析特性与初步应用  71-72
  6.4 小结  72-73
第7章 基于壳聚糖修饰碳糊电极支持纳米金层作免疫传感界面的日本血吸虫抗原免疫传感器研制  73-82
  7.1 引言  73-74
  7.2 实验部分  74-76
    7.2.1 试剂与溶液  74
    7.2.2 仪器与测量  74-75
    7.2.3 HRP标记血吸虫抗原(HRP-SjAg)的制备  75
    7.2.4 CCPE支持的纳米 Au层的形成  75
    7.2.5 免疫分析程序  75-76
    7.2.6 免疫电极表面纳米 Au层的再生  76
  7.3 结果与讨论  76-81
    7.3.1 免疫分析程序的优化  76-78
    7.3.2 免疫反应后结合到传感器表面酶标活性分析  78-79
    7.3.3 免疫培育液中酶标用量的优化  79
    7.3.4 传感器测定 SjAg的校正关系  79-80
    7.3.5 纳米 Au层的再生能力与传感器的初步应用  80-81
  7.4 小结  81-82
第8章 基于带相反电荷天然聚合物强静电相互作用的快速免疫分析研究  82-92
  8.1 引言  82-83
  8.2 实验部分  83-85
    8.2.1 试剂与溶液  83-84
    8.2.2 仪器与测量  84
    8.2.3 褐藻酸钠-转铁蛋白抗体共价交联物的合成  84
    8.2.4 HRP标记转铁蛋白的制备  84-85
    8.2.5 免疫分析程序  85
    8.2.6 CCPE表面的再生  85
  8.3 结果与讨论  85-90
    8.3.1 免疫分析过程的优化  85-88
    8.3.2 CCPE表面酶标活性分析与计时安培测定条件优化  88-89
    8.3.3 测定转铁蛋白工作曲线与初步应用  89-90
  8.4 小结  90-92
结论  92-94
参考文献  94-109
致谢  109-110
附录A (攻读学位期间所发表的学术论文目录)  110

相似论文

  1. 功能化碳纳米管的制备及性能研究,TB383.1
  2. 基于丝网印刷电极的电化学生物传感器及其在兽药和农药残留检测中的应用,TS207.53
  3. 基于石墨烯复合材料的酶电化学传感器的研究,TP212.2
  4. 固定化CdTe量子点和漆酶电化学生物传感器的构建及在邻苯二酚检测中的应用,Q813
  5. 基于类水滑石材料固定酶构筑电化学生物传感器,TP212.3
  6. CK-19基因的电化学检测,R346
  7. 层层组装与纳米材料结合制备新型DNA电化学生物传感器的研究,TP212.3
  8. 血红蛋白直接电化学界面的构建及其生物传感,Q51
  9. 聚苯胺及其衍生物复合纳米材料在DNA电化学生物传感器中的应用,TP212.3
  10. 基于量子点的电化学生物传感器的研制及在肿瘤标志物检测中的应用,TP212.3
  11. 基于金纳米粒子修饰电极的DNA电化学传感器的研究,TP212.2
  12. 电化学生物传感技术用于重金属和蛋白质的检测,Q503
  13. 定向碳纳米管阵列电极的制备及应用研究,TB383.1
  14. 拟除虫菊酯农药与DNA作用及其电化学传感器研究,TP212.3
  15. 基于电子媒介体固定化构筑电化学生物传感器的研究及应用,TP212.3
  16. 适体生物传感器检测凝血酶及肿瘤细胞,R730.4
  17. 血红蛋白仿生膜的电化学传感研究,R341
  18. 新型纳米材料用于电化学生物传感界面的构建,TP212.3
  19. 两种碳基材料的合理功能化及相关电化学器件,TP212.2
  20. 碳纳米管修饰的生物传感器组装构筑与应用,TP212.3
  21. 半导体量子点在蛋白质分析中的应用研究,O629.73

中图分类: > 工业技术 > 自动化技术、计算机技术 > 自动化技术及设备 > 自动化元件、部件 > 发送器(变换器)、传感器
© 2012 www.xueweilunwen.com